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Abstract 

No static equilibrium configuration of two black holes can exist in an axisymmetric 
asymptotically fiat vacuum space-time. 

1. Introduction 

In a previous paper one of the authors developed methods for dealing 
with a static axisymmetric space-time containing two bodies (Mtiller zum 
Hagen, 1970a, 1972). It was mentioned there that these methods can be 
used to disprove the existence of a static axisymmetric two black hole 
configuration; we shall prove this here. 

A static axisymmetric:~ two black hole system which, by assumption, is 

(A) asymptotically flat, 

has roughly speaking the following properties: 

(B) Each black hole acts as a body with positive mass because the 
potential V vanishes at the horizon only and tends to 1 at infinity. 

(C) The two black holes can be separated by a 'plane'. This follows from 
the behaviour of the norms V, r V  -1 of the static resp. axisymmetric 
Killing vectors: 
(a) V = 0 at the horizons only, 
(b) the gradient of r is nowhere vanishing (this is connected with 

the spherical topology of the horizons (Hawking, 1972)). 
The separation property C plays the following role: As the gravitational 
field is attractive (due to B, A; cf. Mtiller zum Hagen, 1970c) two bodies 

t Work partly supported by the Deutsche Forschungsgemeinschaft. 
:~ For a definition of 'axisymmetry' see Carter (1972). 
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enclosed in two non-intersecting convex regions cannot remain in static 
equilibrium. This applies to our case as black holes have a 'convex' shape. 
Thus: 

The properties A, B, C imply that two black holes cannot assume a static 
(axisymmetric) equilibrium configuration. 

It is interesting to contrast the static two black hole problem with the 
static two body problem (Mfiller zum Hagen, 1972): The convex property 
C as well as the positivity property B are automatically fulfilled for a two 
black hole system. This is by no means true for general bodies: One can, 
for material bodies, construct static equilibrium configurations where A 
and B (or A and C) are fulfilled, but the third property, C (or B resp.), 
is violated. 

We now give a brief outline of the proof: 

First we shall prove the global existence of a Weyl coordinate system 
(Section 2), using arguments due to Carter (1970, 1972). 

This will enable us to apply the methods of Mfiller zum Hagen (1970a, 
1972) (Section 3): (i) we shall derive equilibrium conditions for a two 
black hole system; (ii) we shall obtain a contradiction by showing that 
those equilibrium conditions are not consistent with our assumptions. 
This is so because of the following properties of V: 

(a) There exist equipotential surfaces//1 and K2, each enclosing one 
black hole only. 

(b) On/s and K2 the gradient of V points out into the exterior region 
(cf. B). 

(c) K1 and K2 cart be separated by a 'plane' (cf. C). This concept 'plane' 
will be made precise in the course of the proof (Theorem 3.1). 

2. The Global Weyl Coordinate System 

Assumptions 

(A1) V 4 is a static, axisymmetric, simply connected solution of Einstein's 
vacuum field equations; in particular, V 4 is the metrical product 
of R ~ and a space-like simply connected hypersurface 3M. 

(A2) V 4 is asymptotically flat. 
(A3) V 4 contains two black holes (for exact definitions of static black 

holes in terms of the interior structure of 3M see Mfiller zum Hagen 
(1973)); no other incompletenesses occur in 3M. 

A more precise formulation of (A3) and (A2) may be given in the form: 
Any basis for the neighbourhoods of the black holes contains disconnected 
sets; but there is one basis consisting of neighbourhoods with at most two 
components. For an open neighbourhood U of the black holes one can 
find a compact set C of 3M so that 3M\(C U U) is diffeomorphic to R 3 
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minus a compact set. In this region coordinates can be introduced, in which 
the norm V 2 of the static Killing vector and the 3-metric g,b take the form: 

V =  1 + clx[ + O([xl -z) e R 

g.b = + O( [x1-1 )  

(2.1) 

(2.2) 

Lemma 2.1 : The axis, i.e. the set of all degenerate group orbits, consists 
of three non-empty components: A2 joins the two black holes, A 1 and A3 
join one black hole each with the infinite region. 

Proof: Hawking (1972) has shown that black holes in 3M must be 
topologically spheres. Hence the axisymmetric action on a horizon must 
have fixed points (end-points of an axis). If  the system of axis and horizons 
is connected, one has the following order: infinity-axis-black hole-axis- 
black hole-axis-infinity. If the system were not connected, the orbit space 
of the axisymmetric static group would be multiply connected. But this 
contradicts the assumed simple connectedness of V 4. 

Lemma 2.2: There exists a 2-surface 2M orthogonal to the orbits of the 
axisymmetric static group G which meets any orbit of G exactly once. 
2M is uniquely defined up to a G-isometry of V 4. 

Proof: (i) For any asymptotically flat axisymmetric stationary space- 
time the orbits admit locally orthogonal surfaces (Carter, 1969, 1970). 
Such a surface is locally uniquely defined by giving one point on it. Points 
of the axis can only occur as boundary points of 2M. 

(ii) A maximally extended orthogonal surface 2M meets every orbit at 
least once. Otherwise the union of orbits met by 2M would have a non- 
empty boundary, which obviously consists of full orbits. As the orbits in 
the static region are not null-surfaces, the local orthogonal surfaces to 
such a boundary orbit Z will cover a full neighbourhood of Z. Hence some 
ZM' orthogonal to Z will meet 2M, so it must coincide with ZM on all 
orbits met by 2M as well as by ZM'. Therefore 2M U 2M' gives a proper 
extension of 2M in contradiction to the assumed maximality of 2M. 

(iii) Generally, 2M will meet every orbit several times (example below). 
But such a space V 4 will not be simply connected, as we can construct a 
non-trivial covering space by taking for every x ~ 2M the orbit through x 
and topologise the set of these orbits by using the locally l - l -maps from 
the subsets of V 4 of orbits meeting a small neighbourhood of x. Hence, 
under assumption (A1), orbits are met only once. 

Example: Consider R4(t,r,9,z): d s 2 = - d t 2  + dr2 + dzZ + r2 d9 2. Re- 
move { ( r - 2 ) 2 + z 2 < l }  and identify (r,z,9, t) and (r ,z ,9+rc,  t ) on 
{(r - 2) 2 + z 2 = 1}. The orthogonal surfaces are {9 = a} U {9 = a + z~} 
(a ~ Rmod2~z), where the points on {r = 0} are counted twice as boundary 
points. By a slight modification one gets a smooth example. 
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Corollary 2.1 : 2M is a manifold with boundary. The interior is homeo- 
morphic to R 2 (since aM, hence 2M is simply connected) and the boundary 
consists of three pieces of the axis. 

Corollary 2.2: The metric of the space sections 3M orthogonal to the 
static Killing vector can be written in the form: 

ds 2 = gAB dxA dx B + r2(x A) V-Z d~o 2 (p ~ R m o d  2~ 

where gab is the metric on 2M. 

Lemma 2.3: The function r(x a) has no critical points o n  2M~ i.e. the 
gradient r,A vanishes nowhere. 

Remark: This is a simple consequence of Morse's analysis of the relations 
between the critical points of  functions and the underlying manifold (cf. 
Milnor, 1963; Morse & Heins, 1945). No theorem in these papers covers 
exactly our problem, since some work is concerned with non-degenerate 
critical points only (which we do not want to assume a priori) and other 
work is done under some assumptions which, in our case, are not fulfilled 
on the axis. For these reasons we shall give a direct proof. 

Proof (by contradiction): As V* describes a static vacuum, r must be a 
real analytic function (Mfiller zum Hagen, 1970b); furthermore r is a 
non-trivial (r # const.) solution of Laplace's equation Ar := r,l~ + r,22 = 0 
in isothermal coordinates (gABdxA dx B ~ fZ(dxlZ + dxz2)), which always 
exist locally (cf. Synge, 1964). Therefore any critical point p must be a 
saddle point of t ,  and the level set Lro: = {x ~ ZM Jr(x) = ro} has a bifurcation 
in p (ro being the value of r at p).~" From the asymptotic flatness it follows 

that one can find a curve ~ in 2M consisting of two arcs ~ and e'b, where 
a and e are points on the axis segments A1 and A a resp., r is monotonic on 
/N /N 

ab and cb, and p is contained in the component So of 2M\ '~  that does not 
contain the infinite region. Now from So we remove that component of  
Lro which contains p. The remaining set S is the sum of the following three 
sets: 

S~ : The component  of  S which contains {r = 0}. 
$2: The union of the components of SISt  which contain in any neigh- 

bourhood o fp  some points with r < to. 
&: s\(& u &). 

Note that $1 is non-empty and connected as a consequence of Lemma 2.1 
and the fact that r = 0 on the horizon, cf. Carter (1972). 

Case I: $2 = ~ = $3 is impossible as r is a continuous function on the 
simply connected set 2M. 

t Here and in the following we shall often use Hopf's principle (cf. Bochner & Yano, 
1953): A~0 = 0 on a compact set C implies that the extremal values of (0 will be assumed 
on d' only. 
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Case H: $2 ~ ;g. $2 must contain a point q on 7 with a value rl < ro, 
otherwise there would be a minimum of r in the interior of Sz (in 2M, 
~qz is compact;  $2 c 7  U L~0~n contradiction to Ar = 0. But, on the other 

hand, on both arcs aq and cq of 7, the set $2 is separated from S~ by Lr o. 
/ N  / N  

Hence r could not be monotonic on ab and cb. 

Case III: $2 = ;~ ~ Sa. As p is a bifurcation point of Lro and a saddle 
point of  r, a small connected neighbourhood U of p intersects S1 in at 
least two disconnected parts, if Sz vanishes. Two points q~ and q2 in such 
parts can be joined by an arc gl which lies entirely in $1 (as S~ is connected) 
and by a second arc g2 lying in U N (S~ U {p}). These arcs form a closed 
curve which separates 2Minto two parts, both containing entire components 
of Sa. One part, say S ' ,  must have compact closure. As r is not greater 
than ro on the boundary g~ U gz the function r will take a maximum at an 
interior point of S ' ;  again we have a contradiction to Ar = O. 

Lemma 2.4: The level sets La := {r = a} are smooth lines homeomorphic 
to R ~ for every a E R +. 

Proof: L ,  cannot be empty as V 4 is asymptotically flat. Since r is an 
analytic function with no critical points (Lemma 2.3), each component of 
La is a closed smoothly embedded submanifold (cf. Mt~ller zum Hagen 
et al., 1973), which is homeomorphic either to the line R 1 or the circle 
T a. As 2M is simply connected, a component of  some level set homeo- 
morphic to T 1 would be the boundary of a compact subset in whose interior 
r must take an extremal value in contradiction to Ar = 0. The continuous 
extension of r onto the horizons exists and gives r = 0 on them (Carter, 
1972), whence every component of  La is a line running in both directions to 
infinity. From the asymptotic flatness it follows that r behaves monotonically 
at infinity, hence every L,  is connected. 

Lemma 2.5: The metric on 2M can be written as follows: 

g A B d x a d x B ~ f 2 ( d r 2 + d z  z) r ~ R + , z ~ R  

Proof: By Lemma 2.4, r (x l, x 2) possesses globally a conjugate harmonic 
function z(x  1, x2), defined uniquely up to a constant, which completes r to 
the complex analytic function r + iz on 2M. z is strictly monotonic along 
the lines L,. The other statements are simple consequences of (A2) and the 
preceding lemmas. 

As an immediate consequence of the Lemmas 2.1-2.5, one obtains the 
following theorem by relabelling (r,z) = (xi, x2): 

Theorem 2.1 : Under the assumptions (A1, 2, 3) the space time V 4 with 
the axis removed can be covered by a Weyl coordinate system: 

ds z = V-2[eZV(dxl z + dxz z) + x l  z dx3 z] 

- V2 dt 2 x i  ~ R+, x2 ~ R, xa ~ R m o d 2 ~ ,  t ~ R (2.3) 
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Remark: The coordinate system (2.3) gives a homeomorphism 
(xl,x2,x3) --> (r,z, 9) of 3M onto R • (R2\{0, 0}), where the latter set is 
represented (in the obvious way) in cylindrical coordinates (r,z,~o) with 
the axis r = 0 removed. Thereby (2.3) gives a natural (for our purposes) 
extension of aM to an 3A~r~= R3: just fill in the axis. The functions xl, x2, 
V can be continuously extended onto 3~/:= 3~r\a M as follows: x~ = 0 on 
3.g/i; xz parametrises 329/by R, we can find five xz-intervals on 332/so that 
the axis are: A1 = ]-oo,zl[, A2 = ]z2,z3[, A3 = ]z4,+~[ and the black holes 
correspond to B1 := [zl,z2], B2 := [za,z4]; V(x) = O, x e 3 ~  ~ x e B1 U B2. 

3. The Equilibrium Conditions 

Theorem 3.1 : Under the assumptions (A1, 2, 3) there exist a coordinate 
plane Xz = b (in the Wey! coordinate system (2.3)) in 3M which separates 
the two black holes in the following sense: B1 and B2 (defined in the remark 
to Theorem 2.1) have neighbourhoods 01 and U2 such that x2 < b on U1 
and xz > b on 0"2. V is constant on 01 U Uz, the gradient V ,  is a non- 
vanishing outgoing normal on/-)1 U 02, and gr and 02 are homeomorphic 
to spheres. 

Proof: (i) Let p be a point on the axis A2 between B1 and B2 and b the 
x2-value ofp  (in the sense of the remark to Theorem 2.1: b e ]z2, z3[). Then 
x2 < b is a neighbourhood of B 1 and x2 > b of B2 respectively. 

(ii) Assumption (the asymptotic behaviour) and the fact that { V -  0} = 
B 1 U B2 imply that the sets {V< a; a e ]0,1[} form a basis for the neigh- 
bourhoods of B 1 U B2. 

(iii) The non-critical values of V (the gradient of V vanishes nowhere 
on the level surface) are dense in ]0,1 [ as the critical values form a subset 
of measure zero (cf. Mtiller zum Hagen, 1970c). 

(i), (ii), (iii) imply that we can find a non-critical value c e ]0,1 [ so that 
{ V = e} contains two components K, (i = 1,2) such that: 

(a) K~ is the boundary of a neighbourhood U~ of Bi. 
(b) K~ does not intersect the set {x2 = b}. 
(c) On Kt the gradient V,a points out of U, (remember: V =  0 on B~ 

and V = 1 at infinity). 

Moreover, one has: 

(d) Ki is homeomorphic to the sphere, because it is connected, invariant 
under the axisymmetry, and contains two points of the axis. 

Theorem 3.2 : There exists no space time V 4 which fulfills the assumptions 
(A1, 2, 3). 

Proof: We divide the proof  into three steps, in the first one we derive 
general equilibrium conditions, in the next step we specialise a certain 
surface of integration to our K, = O~ constructed in Theorem 3.1. Finally 
we show that the equilibrium conditions lead to a contradiction. 
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Step I: The function U as defined in (2.3) can be continuously extended 
onto the axis At U A2 U Aa. U must vanish there, because the metric (2.3) 
is regular on the axis. In Synge (1964, p. 312) it has been shown that 

U(x) = f v~ dx ~ 
Y 

where 

where 7 is an arbitrary curve joining the axis with 
the point x (3.1) 

W : = l o g  V and (vl, v2) := (xl[W.a z -  W, z2],2xl W,1 W,2) (3.2) 

This implies an equilibrium condition: 

0 = ( v~ dx B, i = l, 2 where 71 joins the segments A1 and A2 of 
~J the axis, and 72 joins As and A 3 (3.3) 

Introducing the flat metric ~,bdxadx b :~ dxl 2 +dx2 z +xlZdxa 2 on aM, 
one can rewrite the equilibrium condition (3.3) and the essential field 
equation: 

F~ := f wb dS b = 0; wb := I/V,2 W.b -- �89 W,c W,a (3.4) 
C l 

z]W:= ~" W ~ =  0 o n a M  (3.5) 

The quantities and operators with ' ^ '  are defined with respect to g~b; the 
surface C, is obtained by rotating the curve ~, with the axisymmetric group. 

Step H: Now we choose the K~ as constructed in the proof of Theorem 3.1 
as the integration surfaces C,. As dS a is parallel to the gradient of V, hence 
of W, (3.4) leads to: 

W,,g )(W,c , , ,d6 , (3.6) 
KI 

Due to the fact that W =  const on K~ and to the asymptotic behaviour 
(2.1, 2.2) we obtain for a solution of a Laplace equation (3.5) the following 
integral representation: 

W(x) = Z f pfx,2) - l a ( 2 ) g  (3.7) 
i=1 K~ 

Here p(x, 2) is the Euclidean distance between x and )2; 2 is a point in the 

surface element d~, and o-:= W,~n" is the product of W,, with the outer 
unit normal n" of K,. Inserting (3.7) into (3.6), we obtain: 

0 = f [ f  (x2-22)p-aa(2)d~]a(x)d '  (3.8) 



450 HENNING MULLER ZUM HAGEN AND HANS J. SEIFERT 

Step III:  The integrand in (3.8) is strictly positive because: 

(i) (x2 - 22) > 0 (convexity; Theorem 3.1) 
(ii) a > 0 (V,a points outward;  Theorem 3.1) q.e.d. 

Since the extension of  the p roof  to the cases of  more black holes is obvious, 
we have:  

Corollary: Two or more axisymmetric black holes cannot  exist in a 
static equilibrium in an asymptotically flat vacuum space. 

Finally, let us remark that if W were the potential (fulfilling z] W = 0) 
of  Newton ' s  gravitational theory, then the quanti ty F~ of  (3.4) would be 
precisely the xz-component  of  the gravitational force acting on the volume 
enclosed by C~. This can be seen f rom the fact that  wb is a part  of  the stress 
tensor of  the gravitational field: 

V/oh := w o w,b - �89 w ,c  v/,dsl cd 

and (having used Stoke's theorem) f rom:  

cr 

Consequently the r ight-hand side of  (3.8) is the total force between two 
surface layers K~ and/(2  with surface density ~. 
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