Two Axisymmetric Black Holes cannot be in Static Equilibrium

HENNING MÜLLER ZUM HAGEN† and HANS J. SEIFERTt

Institut fiir Theoretische Physik, Universitiit Hamburg

Received." 12 *February* 1973

Abstract

No static equilibrium configuration of two black holes can exist in an axisymmetric asymptotically fiat vacuum space-time.

1. Introduction

In a previous paper one of the authors developed methods for dealing with a static axisymmetric space-time containing two bodies (Müller zum Hagen, 1970a, 1972). It was mentioned there that these methods can be used to disprove the existence of a static axisymmetric two black hole configuration; we shall prove this here.

A static axisymmetric: two black hole system which, by assumption, is

(A) asymptotically flat,

has roughly speaking the following properties:

- (B) Each black hole acts as a body with *positive mass* because the potential V vanishes at the horizon only and tends to 1 at infinity.
- (C) The two black holes can be *separated* by a 'plane'. This follows from the behaviour of the norms V, rV^{-1} of the static resp. axisymmetric Killing vectors:
	- (a) $V = 0$ at the horizons only,
	- (b) the gradient of r is nowhere vanishing (this is connected with the spherical topology of the horizons (Hawking, 1972)).

The separation property C plays the following role: As the gravitational field is attractive (due to B, A; cf. Müller zum Hagen, 1970c) two bodies

 \ddagger For a definition of 'axisymmetry' see Carter (1972).

t Work partly supported by the Deutsche Forschungsgemeinschaft.

Copyright © 1973 Plenum Publishing Company Limited. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photo-
copying, microfil

444 HENNING MULLER ZUM HAGEN AND HANS J. SEIFERT

enclosed in two non-intersecting convex regions cannot remain in static equilibrium. This applies to our case as black holes have a 'convex' shape. Thus:

The properties A, B, C imply that two black holes cannot assume a static (axisymmetric) equilibrium configuration.

It is interesting to contrast the static two black *hole* problem with the static two *body* problem (Mfiller zum Hagen, 1972): The convex property C as well as the positivity property B are automatically fulfilled for a two black hole system. This is by no means true for general bodies: One can, for material bodies, construct static equilibrium configurations where A and B (or A and C) are fulfilled, but the third property, C (or B resp.), is violated.

We now give a brief outline of the proof:

First we shall prove the global existence of a Weyl coordinate system (Section 2), using arguments due to Carter (1970, 1972).

This will enable us to apply the methods of Müller zum Hagen (1970a, 1972) (Section 3): (i) we shall derive equilibrium conditions for a two black hole system; (ii) we shall obtain a contradiction by showing that those equilibrium conditions are not consistent with our assumptions. This is so because of the following properties of V :

- (a) There exist equipotential surfaces K_1 and K_2 , each enclosing one black hole only.
- (b) On K_1 and K_2 the gradient of V points out into the exterior region (cf. B).
- (c) K_1 and K_2 can be separated by a 'plane' (cf. C). This concept 'plane' will be made precise in the course of the proof (Theorem 3.1).

2. The Global Weyl Coordinate System

Assumptions

- (A1) V^4 is a static, axisymmetric, simply connected solution of Einstein's vacuum field equations; in particular, V^4 is the metrical product of R^1 and a space-like simply connected hypersurface 3M .
- (A2) V^4 is asymptotically flat.
- (A3) $V⁴$ contains two black holes (for exact definitions of static black holes in terms of the interior structure of $3M$ see Müller zum Hagen (1973)); no other incompletenesses occur in ${}^{3}M$.

A more precise formulation of (A3) and (A2) may be given in the form: Any basis for the neighbourhoods of the black holes contains disconnected sets; but there is one basis consisting of neighbourhoods with at most two components. For an open neighbourhood U of the black holes one can find a compact set C of ³M so that ³M\(C \cup U) is diffeomorphic to R³

minus a compact set. In this region coordinates can be introduced, in which the norm V^2 of the static Killing vector and the 3-metric g_{ab} take the form:

$$
V = 1 + c|x|^{-1} + O(|x|^{-2}) \qquad c \in R \tag{2.1}
$$

$$
g_{ab} = \delta + O(|x|^{-1})
$$
 (2.2)

Lemma 2.1 : The axis, i.e. the set of all degenerate group orbits, consists of three non-empty components: A_2 joins the two black holes, A_1 and A_3 join one black hole each with the infinite region.

Proof: Hawking (1972) has shown that black holes in ³M must be topologically spheres. Hence the axisymmetric action on a horizon must have fixed points (end-points of an axis). If the system of axis and horizons is connected, one has the following order: infinity-axis-black hole-axisblack hole-axis-infinity. If the system were not connected, the orbit space of the axisymmetric static group would be multiply connected. But this contradicts the assumed simple connectedness of V^4 .

Lemma 2.2: There exists a 2-surface 2M orthogonal to the orbits of the axisymmetric static group G which meets any orbit of G exactly once. ²M is uniquely defined up to a G-isometry of V^4 .

Proof: (i) For any asymptotically flat axisymmetric stationary spacetime the orbits admit locally orthogonal surfaces (Carter, 1969, 1970). Such a surface is locally uniquely defined by giving one point on it. Points of the axis can only occur as boundary points of 2M .

(ii) A maximally extended orthogonal surface ${}^{2}M$ meets every orbit at least once. Otherwise the union of orbits met by 2M would have a nonempty boundary, which obviously consists of full orbits. As the orbits in the static region are not null-surfaces, the local orthogonal surfaces to such a boundary orbit Z will cover a full neighbourhood of Z . Hence some $^{2}M'$ orthogonal to Z will meet ^{2}M , so it must coincide with ^{2}M on all orbits met by ²M as well as by ²M'. Therefore ²M \cup ²M' gives a proper extension of ^{2}M in contradiction to the assumed maximality of ^{2}M .

(iii) Generally, 2M will meet every orbit several times (example below). But such a space V^4 will not be simply connected, as we can construct a non-trivial covering space by taking for every $x \in {}^2M$ the orbit through x and topologise the set of these orbits by using the locally l-l-maps from the subsets of V^4 of orbits meeting a small neighbourhood of x. Hence, under assumption (A1), orbits are met only once.

Example: Consider $R^4(t, r, \varphi, z)$: $ds^2 = -dt^2 + dr^2 + dz^2 + r^2 d\varphi^2$. Remove $\{ (r-2)^2+z^2<1 \}$ and identify (r, z, φ, t) and $(r, z, \varphi + \pi, t)$ on ${(r-2)^2 + z^2} = 1$. The orthogonal surfaces are ${\varphi = a}$ \cup ${\varphi = a + \pi}$ $(a \in R \mod 2\pi)$, where the points on $\{r = 0\}$ are counted twice as boundary points. By a slight modification one gets a *smooth* example.

446 HENNING MÜLLER ZUM HAGEN AND HANS J. SEIFERT

Corollary 2.1: 2M is a manifold with boundary. The interior is homeomorphic to R^2 (since 3M , hence 2M is simply connected) and the boundary consists of three pieces of the axis.

Corollary 2.2: The metric of the space sections $3M$ orthogonal to the static Killing vector can be written in the form:

$$
ds^2 = g_{AB} dx^A dx^B + r^2(x^A) V^{-2} d\varphi^2 \qquad \varphi \in R \operatorname{mod} 2\pi
$$

where g_{AB} is the metric on ²M.

Lemma 2.3: The function $r(x^4)$ has no critical points on ²M, i.e. the gradient r_A vanishes nowhere.

Remark: This is a simple consequence of Morse's analysis of the relations between the critical points of functions and the underlying manifold (cf. Milnor, 1963; Morse & Heins, 1945). No theorem in these papers covers exactly our problem, since some work is concerned with non-degenerate critical points only (which we do not want to assume *a priori)* and other work is done under some assumptions which, in our case, are not fulfilled on the axis. For these reasons we shall give a direct proof.

Proof (by contradiction): As V^4 describes a static vacuum, r must be a real analytic function (Müller zum Hagen, 1970b); furthermore r is a non-trivial ($r \neq$ const.) solution of Laplace's equation $Ar := r_{11} + r_{22} = 0$ in isothermal coordinates $(g_{AB}dx^A dx^B = f^2(dx_1^2 + dx_2^2)$, which always exist locally (cf. Synge, 1964). Therefore any critical point p must be a saddle point of r, and the level set $L_{r_0} = \{x \in {}^2M | r(x) = r_0\}$ has a bifurcation in p (r_0 being the value of r at p).† From the asymptotic flatness it follows that one can find a curve γ in ²M consisting of two arcs \hat{ab} and \hat{cb} , where a and c are points on the axis segments A_1 and A_3 resp., r is monotonic on \hat{ab} and \hat{cb} , and p is contained in the component S_0 of ²M\ γ that does not contain the infinite region. Now from \overline{S}_0 we remove that component of L_{r_0} which contains p. The remaining set S is the sum of the following three sets:

- S_1 : The component of S which contains $\{r = 0\}$.
- S_2 : The union of the components of $S\setminus S_1$ which contain in any neighbourhood of p some points with $r < r_0$.
- S_3 : $S \setminus (S_1 \cup S_2)$.

Note that S_1 is non-empty and connected as a consequence of Lemma 2.1 and the fact that $r = 0$ on the horizon, cf. Carter (1972).

Case I: $S_2 = \emptyset = S_3$ is *impossible* as r is a continuous function on the simply connected set *2M.*

t Here and in the following we shall often use Hopf's principle (cf. Bochner & Yano, 1953): $\Delta\varphi = 0$ on a compact set C implies that the extremal values of φ will be assumed on \dot{C} only.

Case II: $S_2 \neq \emptyset$. S_2 must contain a point q on γ with a value $r_1 < r_0$, otherwise there would be a minimum of r in the interior of S_2 (in ²M, S_2 is compact; $S_2 \subset \chi \cup L_{r_0}$ in contradiction to $Ar = 0$. But, on the other hand, on both arcs \hat{qq} and \hat{cq} of γ , the set S_2 is separated from S_1 by L_{r_0} . Hence *r* could not be monotonic on \hat{ab} and \tilde{cb} .

Case III: $S_2 = \emptyset \neq S_3$. As p is a bifurcation point of L_{r_0} and a saddle point of r, a small connected neighbourhood \bar{U} of p intersects S_1 in at least two disconnected parts, if S_2 vanishes. Two points q_1 and q_2 in such parts can be joined by an arc g_1 which lies entirely in S_1 (as S_1 is connected) and by a second arc g_2 lying in $U \cap (S_1 \cup \{p\})$. These arcs form a closed curve which separates 2M into two parts, both containing entire components of S_3 . One part, say S', must have compact closure. As r is not greater than r_0 on the boundary $g_1 \cup g_2$ the function r will take a maximum at an interior point of S'; again we have a contradiction to $\Delta r = 0$.

Lemma 2.4: The level sets $L_a := \{r = a\}$ are smooth lines homeomorphic to R^1 for every $a \in R^+$.

Proof: L_a cannot be empty as V^4 is asymptotically flat. Since r is an analytic function with no critical points (Lemma 2.3), each component of L_a is a closed smoothly embedded submanifold (cf. Müller zum Hagen *et al.*, 1973), which is homeomorphic either to the line $R¹$ or the circle $T¹$. As ²M is simply connected, a component of some level set homeomorphic to $T¹$ would be the boundary of a compact subset in whose interior r must take an extremal value in contradiction to $Ar = 0$. The continuous extension of r onto the horizons exists and gives $r = 0$ on them (Carter, 1972), whence every component of L_a is a line running in both directions to infinity. From the asymptotic flatness it follows that r behaves monotonically at infinity, hence every L_a is connected.

Lemma 2.5: The metric on 2M can be written as follows:

$$
g_{AB} dx^A dx^B = f^2 (dr^2 + dz^2) \qquad r \in R^+, z \in R
$$

Proof: By Lemma 2.4, $r(x^1, x^2)$ possesses globally a conjugate harmonic function $z(x^1, x^2)$, defined uniquely up to a constant, which completes r to the complex analytic function $r + iz$ on ²M, z is strictly monotonic along the lines L_a . The other statements are simple consequences of (A2) and the preceding lemmas.

As an immediate consequence of the Lemmas 2.1-2.5, one obtains the following theorem by relabelling $(r, z) = (x_1, x_2)$:

Theorem 2.1: Under the assumptions $(A1, 2, 3)$ the space time V^4 with the axis removed can be covered by a Weyl coordinate system:

$$
ds^{2} = V^{-2} [e^{2U} (dx_{1}^{2} + dx_{2}^{2}) + x_{1}^{2} dx_{3}^{2}]
$$

-
$$
V^{2} dt^{2} \qquad x_{1} \in R^{+}, x_{2} \in R, x_{3} \in R \mod 2\pi, t \in R
$$
 (2.3)

Remark: The coordinate system (2.3) gives a homeomorphism $(x_1, x_2, x_3) \rightarrow (r, z, \varphi)$ of ³*M* onto $R \times (R^2 \setminus \{0, 0\})$, where the latter set is represented (in the obvious way) in cylindrical coordinates (r, z, φ) with the axis $r = 0$ removed. Thereby (2.3) gives a natural (for our purposes) extension of ³M to an ³ $\overline{M} \cong R^3$: just fill in the axis. The functions x_1, x_2 , V can be continuously extended onto ${}^3\dot{M} := {}^3\bar{M} \setminus {}^3M$ as follows: $x_1 = 0$ on ³*M*; *x₂* parametrises ³*M* by *R*, we can find five *x*₂-intervals on ³*M* so that the axis are: $A_1 =]-\infty, z_1[, A_2 =]z_2, z_3[, A_3 =]z_4, +\infty[$ and the black holes correspond to $B_1 := [z_1, z_2], B_2 := [z_3, z_4], V(x) = 0, x \in M \Leftrightarrow x \in B_1 \cup B_2.$

3. The Equilibrium Conditions

Theorem 3.1: Under the assumptions (A1, 2, 3) there exist a coordinate plane $x_2 = b$ (in the Weyl coordinate system (2.3)) in ³M which separates the two black holes in the following sense: B_1 and B_2 (defined in the remark to Theorem 2.1) have neighbourhoods U_1 and U_2 such that $x_2 < b$ on U_1 and $x_2 > b$ on U_2 . V is constant on $U_1 \cup U_2$, the gradient $V_{,a}$ is a nonvanishing outgoing normal on $U_1 \cup U_2$, and U_1 and U_2 are homeomorphic to spheres.

Proof: (i) Let p be a point on the axis A_2 between B_1 and B_2 and b the x_2 -value of p (in the sense of the remark to Theorem 2.1: $b \in [z_2, z_3]$). Then $x_2 < b$ is a neighbourhood of B_1 and $x_2 > b$ of B_2 respectively.

(ii) Assumption (the asymptotic behaviour) and the fact that ${V=0}$ = $B_1 \cup B_2$ imply that the sets $\{V < a; a \in]0,1[\}$ form a basis for the neighbourhoods of $B_1 \cup B_2$.

(iii) The non-critical values of V (the gradient of V vanishes nowhere on the level surface) are dense in $[0,1]$ as the critical values form a subset of measure zero (cf. Müller zum Hagen, 1970c).

(i), (ii), (iii) imply that we can find a non-critical value $c \in [0,1]$ so that ${V = c}$ contains two components K_i ($i = 1, 2$) such that:

- (a) K_i is the boundary of a neighbourhood U_i of B_i .
- (b) K_i does not intersect the set $\{x_2 = b\}.$
- (c) On K_i the gradient $V_{,a}$ points out of U_i (remember: $V=0$ on B_i and $V = 1$ at infinity).

Moreover, one has:

(d) K_i is homeomorphic to the sphere, because it is connected, invariant under the axisymmetry, and contains two points of the axis.

Theorem 3.2: There exists no space time V^4 which fulfills the assumptions (A1, 2, 3).

Proof: We divide the proof into three steps. In the first one we derive general equilibrium conditions, in the next step we specialise a certain surface of integration to our $K_i = U_i$ constructed in Theorem 3.1. Finally we show that the equilibrium conditions lead to a contradiction.

Step I: The function U as defined in (2.3) can be continuously extended onto the axis $A_1 \cup A_2 \cup A_3$. U must vanish there, because the metric (2.3) is regular on the axis. In Synge (1964, p. 312) it has been shown that

$$
U(x) = \int_{\gamma} v_A dx^A
$$
 where γ is an arbitrary curve joining the axis with
the point x (3.1)

where

$$
W := \log V \qquad \text{and} \qquad (v_1, v_2) := (x_1[W_{,1}^2 - W_{,2}^2], 2x_1 W_{,1} W_{,2}) \quad (3.2)
$$

This implies an equilibrium condition:

$$
0 = \int_{\gamma_i} v_B dx^B, \qquad i = 1, 2 \qquad \text{where } \gamma_1 \text{ joins the segments } A_1 \text{ and } A_2 \text{ of the axis, and } \gamma_2 \text{ joins } A_2 \text{ and } A_3 \tag{3.3}
$$

Introducing the flat metric $\hat{g}_{ab}dx^a dx^b := dx_1^2 + dx_2^2 + x_1^2 dx_3^2$ on 3M , one can rewrite the equilibrium condition (3.3) and the essential field equation:

$$
F_i := \int_{c_i} w_b \, d\hat{S}^b = 0; \qquad w_b := W_{,2} \, W_{,b} - \frac{1}{2} \hat{g}_{2b} \, W_{,c} W_{,d} \, \hat{g}^{cd} \tag{3.4}
$$

$$
\widehat{A}W := \widehat{\nabla}^a W_{,a} = 0 \qquad \text{on } {}^3M \tag{3.5}
$$

The quantities and operators with '[^]' are defined with respect to \hat{g}_{ab} ; the surface C_i is obtained by rotating the curve γ_i with the axisymmetric group.

Step II: Now we choose the K_i as constructed in the proof of Theorem 3.1 as the integration surfaces C_i . As dS^a is parallel to the gradient of V, hence of W , (3.4) leads to:

$$
0 = \int\limits_{K_l} (w_b, W_{,a} \hat{g}^{ab}) (W_{,c} W_{,d} \hat{g}^{cd})^{-1/2} d\hat{S}
$$
 (3.6)

Due to the fact that $W =$ const on K_i and to the asymptotic behaviour (2.1, 2.2) we obtain for a solution of a Laplace equation (3.5) the following integral representation:

$$
W(x) = \sum_{i=1}^{2} \int_{K_i} \rho(x, \tilde{x})^{-1} \sigma(\tilde{x}) d\hat{S}
$$
 (3.7)

Here $\rho(x, \tilde{x})$ is the Euclidean distance between x and \tilde{x} ; \tilde{x} is a point in the surface element dS, and $\sigma:= W_{,a}n^a$ is the product of $W_{,a}$ with the outer unit normal n^a of K_i . Inserting (3.7) into (3.6), we obtain:

$$
0 = \iint\limits_{K_1} \left[\int\limits_{K_2} (x_2 - \tilde{x}_2) \, \rho^{-3} \sigma(\tilde{x}) \, d\tilde{S} \right] \sigma(x) \, d\tilde{S}
$$
 (3.8)

Step III: The integrand in (3.8) is strictly positive because:

- (i) $(x_2 \tilde{x}_2) > 0$ (convexity; Theorem 3.1)
(ii) $\sigma > 0$ (V_e points outward: Theorem
- $(V_{a}$ points outward; Theorem 3.1) q.e.d.

Since the extension of the proof to the cases of more black holes is obvious, we have:

Corollary: Two or more axisymmetric black holes cannot exist in a static equilibrium in an asymptotically flat vacuum space.

Finally, let us remark that if W were the potential (fulfilling $\hat{\Delta}W = 0$) of Newton's gravitational theory, then the quantity F_i of (3.4) would be precisely the x_2 -component of the gravitational force acting on the volume enclosed by C_t . This can be seen from the fact that w_b is a part of the stress tensor of the gravitational field:

$$
W_{ab} := W_{,a} W_{,b} - \frac{1}{2} \hat{g}_{ab} W_{,c} W_{,d} \hat{g}^{cd}
$$

and (having used Stoke's theorem) from:

$$
F_i \underset{c_i}{\equiv} \int_{c_i} W_{2b} d\hat{S}^b \underset{*}{\equiv} \int W_{,2} \hat{A} W d\hat{V}
$$

Consequently the right-hand side of (3.8) is the total force between two surface layers K_1 and K_2 with surface density σ .

Acknowledgement

This work is based on a talk of one of the authors at the "Conference On Relativity and Related Topics", Brussels 1971.

References

- Bochner, S. and Yano, K. (1953). *Curvature and Betti Numbers.* Princeton University Press, Princeton, N.J.
- Carter, B. (I 969). *Journal of Mathematical Physics,* 10, 70.

Carter, B. (1970). *Communications in Mathematical Physics*, 17, 233.

- Carter, B. (1972). *The Stationary Axisymmetric Black Hole Problem.* Preprint, Cambridge.
- Hawking, S. W. (1972). *Communications in Mathematical Physics*, 25, 152.

Milnor, J. (1963). *Morse Theory.* Princeton University Press, Princeton, N.J.

Morse, M. and Heins, M. (1945). *Annals of Mathematics,* 46, 625.

Müller zum Hagen, H. (1970a). Thesis, Hamburg.

Miiller zum Hagen, H. (1970b). *Proceedings of the Cambridge Philosophical Society,* 67, 415.

Miiller zum Hagen, H. (1970c). *Proceedings of the Cambridge Philosophical Society,* **68, 187.**

Miiller zum Hagen, H. (1972). *The Static Two Body Problem.* To be published in *Proc. Camb. Phil. Soc.*

Mtiller zum Hagen, H., Robinson, D. C. and Seifert, H. J. (1973). *GRG Journal,* 4, 53.

Synge, J. L. (1964). *Relativity, The General Theory.* North Holland Publishing Company, Amsterdam.